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MAXIMIZING STATIONARY UTILITY IN A CONSTANT TECHNOLOGY™
by

Richard Beals*™ and Tjalling C. Koopmans™**
1. Introduction

This paper is concerned with & problem in the optimal control
of & nonstochastic process over time. It can also be looked on as a
problem in convex progremming in a space of infinite sequences of real
numbers. Because the problem arose in the theory of optimal economic

growth, the exposition will use some economic terminology.

The literature on optimal economic growth contains several

papers**** in which a utility function of the form

o0
(1) Uy, Xy wee) = £ @ u(x), O<a<1l,

t=1
is maximized under given conditions of technology and population growth.

Here x is per capita consumption in period t , and u(x) is a

t

strictly concave, increasing, single-period utility function. « 1is

called a discount factor. If a = , then p 18 called a discount rate.

-
l+p
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* This study was bégun in the 'summer of 1961 when both authors were engaged
in research under a contract between the Office of Naval Research and the
Cowles Foundation. The paper will be presented to the International Sym-
posium on Mathematical Programming, Princeton, N.J., August 1967. Pre-
liminary results for the special case of a linear production function
were presented by Koopmans to a meeting of the Econometric Soclety in St.
Louis, December 1960.

** Department of Mathematics, University of Chicago.

**¥Cowles Foundation for Research in Economics at Yale University. Work
completed under & grant from the National Science Foundation.

“%ee Ramsey [1928], Cass [1965], Koopmans [1965, 1967], Malinvaud [1965],
and other papers cited there.



A generalization of (1) has been proposed under the name stationary utility,*

* Koormans [1960, 1966), Koopmans, Diamond and Williamson [196L4].

and is definable by a recursive relation
(2) U(xl, xe, X, o.-) i V(xl, U(xa, xj, ooo)) .

One obtains (1) by V(x, U) = u(x) + @ U . The natural generalization of «

in (1) to stationary utility is the function

oV U
b/ AR <—%%_)>U=U(x X, X, ece) )

In this paper we study the maximization of (2) under production

assumptions, described below.

2. Definitions, notations and assumptions

We assume discrete time t , and a single commodity serving as

capital (amount z_ at end of period t ) and also as consumption good

t

(flow x, during period t ) . Technology is constant and is represented by

t

a production function f(z) . If the labor force is assumed constant, f(zt)

represents output in period t+l , net of depreciation. If the labor force

grows exponentially at a given rate )\ >0, z, and x, stand for capital

and consumption per worker, and f(z) represents output per worker less
Az , the capital formation required in each period merely to keep z, con-

stant.
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A capital path is a sequence z = (zo, 2y, cea)l, OF z, <z,

where 0 <z <+ . We denote by (2 the tail (zt, Zy 417 ...) and by

%y the finite segment (zs, Z 10 v zt) .

A consumption path is a sequence, x = (xl, X5 2os) 3

X and the segment X as above,

x, >0, We define the tail Xt

t = t
For any constant & , we denote by cona the constant (capital

or consum>tion) path (a, a, &, ««. ) &

The capital path oz is sald to be feasible for the initial

capital stock z if zO =2z and

+

(3) 20 S2, *E(z), t30,1, ... .

If o is feasible for 2z the associated consumption path 1% with

(k) Xepp = 2 ¥ f(zt) -z, =0, 1, ...

1 >0, t
is also said to be feasible for 2z . Let ?z and /z be the
collections of capital paths and consumption paths, respectively, which

are feasible for z .
We assume

(I) The production function f(z) is continuous and continuously

differentiable on the interval rj= (o, 'E), z § o , Moreover

z + £(z)

£(0) =0, 0<¢£'(0), f 1is concave, and the function h(z)

is an increasing function mapping ('zonto itself. Hence h(E)

z+2

To interpret these assumptions, let F(Z, L) represent total

output before depreciation, Z the total capital stock, L the labor force.

lim h(z) = z .

.
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The standard assumptions F(0, L) = F(Z, 0) =0 , F >0, F) >0, K., <0

’
F homogeneous of degree 1, then imply through F(Z, L) = L{(4/L) , igneriug
depreciation, that Z =o . Either exponential labor force grovih or o
constant rate of depreciation will make Z the finite number defincd b

£(z) =0 . Should 2 >7Z , then feasibility requires z, <z+c for
any € >0 and large enough t (see Figure 1). From assumptions or U :ade

below we shall see that optimality requires 2z, < z eventually. On the othcr

t
hand, for 0 < Z, <z , feasibility precludes zy 3'2 , whereas Zy = z
requires zt § z . For these reasons we consider only values 2o € Cﬂ .
We note for future use that if 0 < z(') <z , feasibility permits 1lim z2' = z g
t40
see Figure 1.
i B
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Figure 1. Two capital paths with zero consumption.
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(1I) U(;x) 1is defined on the union x- U , of all
Z€

feasible sets, satisfies the recursive relation (2), and is continuous

on each )_ , with respect to the product topology.*

For a definition of the product topology see Kelley [1955], or use

s "t'|

| where B
1+ [x - x[]’

-
the distance function D(.x, .x') = I 8t
1771 t21
is any number with 0 <& <1,

An example where U(lx) is continuous on each )C 5 but not

on )C is given below.

(1II) Uu(,x) 1is strictly quasi-concave on .
1l

That is, 1x(x) = >.(1x) + (1-x)(1x') , 0<\A<1, implies
0(,x(1)) >atn {u(y0), u(yx)}

a standard assumption in utility theory. In general, it expresses &
decreasing desire for one commodity or commodity bundle relative to another

as the other is traded for the one at a constant barter ratio.

(Iv) V(x, U) has positive continuous derivatives dV/dx ,

ov/au , ggq_f) xU\, where QQ = (0, Z) and Q| is the range of U(lx) .

Moreover V(x, U) is continuous at x =0 for all U, and, if V is

not differentiable at x =0 , then lim SV - Y -« forall U.

x+0

Tt follows from (II) and (IV) that U(lx) strictly increases

with each xt g
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The purpose of the exception at x = O 1s to permit a utility
function for which " zg >0 " implies that " ;Et >0 forall t,"

where 1;2 denotes the optimal consumption path.

From the identity U(conx) = V(x, U(conx)) implied in (2) one
finds by differentiation that (IV) implies O < a(x) <1 for all x >0

with X € :(,.
con

—

() (V> ot va(x; y; U) = V(x, V(y) U)) and

ave(x) Y U) av2(x) Y U)

- d
D(x, y; U) = - | <X = .
’ \ax Vg(x, y; U) = const. ox dy

Then, for given y, U, D(x, y; U) is strictly decreasing in x on

Together with an assumption we will not need, that D(x, y; U)
strictly increases with y , (V) is implied in the following plausible
assumption: The first- and second-period consumptions x(B), y(B) that
nmaximize Ve(x, y; U) for given U if bought at given positive prices
P, @ within a budget px + qy : B, are strictly increasing with B .
Economically, consumption in neither period is inferior to that in the

other period, in the way potatoes are inferior to steak.

The three assumptions Jjust mentioned are illustrated in

Figure 2,



==

R i
YV, by U= conet,
< e

Figure 2. Noninferiority of consumption in Periods 1 and 2.

An example of a pair of functions U(lx) , £(z) , that satisfies
14
all assumptions is given by (1) above, with u(x) = x , 0O <y <1 ,(aid any f(z) ,
concave and continuously differentiable on (/(/= (0, ) with

£(0) =0, £'(0) >0, 1imf'(z) =0 , hence 1lim (f(z)/z) = O . Then, for any
2% Z¥0

€ >0 and sufficiently large t , from (3), (&), Zy 11 Eh(zt) s (l+e)zt .

< £-T
hence X, .S }-,(zt) = (l+e)zt < (1+e) zp for t > some large T.
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Taking € < al -1 one sees that the summation (1) converges on each ’x .

hence on x . Note that U(lx) is not defined on all of X KRSX L,

=

and is not continuous on _I if f£(z) 1s not bounded; in fact, if u(x) =x <,

™ wien () 2o , t#n and

the sequence of consumption paths N

1

xr(xn)= a-2n converges to cono in the product topology, but
(n)y _ .
U(lx ) =1 for all n , whereas U(cono) =0 .

3. Optimal capital paths

Given a feasible capital path oZ ? let lx be the associated

consumption path given by (4). Define w(oz) by W(oz) = U(lx) . It
o? and oz' are in a then the concavity of the production function
f(z) dimplies that a consex combination oz" = A.(oz) + (l-x)(oz') ,0<A<1,
is also in , » @and that the associated consumption path ox" has
o

xg 2 ).xt + (l-x)xé for all t . This and the strict quasi-concavity of U
imply that W 1is also strictly quasi-concave.

* A capital path 02 is optimal for 2z 1if ;o 6?1 , and
w(oz) > w(oz) for all z¢ az ;

A capital path o2 1s rtrictly monotone in time if one of the

following conditions holds:

(1) 2, <2 t=0,1, 2, ... ;
(11) 2, =2, t=20,1,2, e
(111) z, >z I = O NN L

t t+l

\

(iii)n  >Z,y 0 t<n, 2z =0, t>n.
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The assumptions (I) - (V) in section 2 imply the following

Theorem 1. For any initial capital stock 2z € (j_'_chere is a

~

unique optimal capital path Oz . This path varies continuously with =z

and is strictly monotone in time.

If we define h(n)(z) recursively by h(n)(z) = h(h(n-l)(z)) ,
h(o)(z) = z , then the set 3’.2 is contained in the product %—: of
the closed intervals [O, h(n)(z)] , n=0,1, ... . The latter set is
compact with respect to the product topology, by the theorem of Tychonov,
and %’z is easily seen to be a closed subset, hence likewise compact.
Continuity of U on xz implies continuity of W on 2’,2 . Then the
continuous, strictly quasi-concave function W assumes a maximum at a
unique element 02 of the compact convex set gz . The remainder of this
section is devoted to showing continuity and strict monotonicity of this

unique optimal capital path 02 3

Given z ¢ (j , let 02 be the optimal capital path for z

and set ﬁ(z) = w(OQ) .

Lemma 1. ﬁ(z) is strictly increasing, and continuous from

the left.

Proof. If 0Sz2<z2'<Z, and if 02 i optimal in ;z,

g Then for the

[ M

1 i ' = ' |=
let o € gz, be given by 2, =2' 5 42 1

L} 1 z [} 2
assoclated consumption paths lx 0 lx » Wwe have Xy >xl and 2x = 2x 5

80 ﬁ(z') =>W(oz')>W(o§) = W(z) . Therefore W 1is increasing.
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If 0<z<7z » then, in the optimal consumption path l;(

assoclated with 02 , Bome ;Et is the first to be positive. Then

’it, >0 for 0 St §t - 1 ,and for a sufficiently small € >0 there is
a 8 >0 such that the path (lxt-l » X, - €, t+lx) = ;X 1is feasible
for z -8 . Then U(lx) < ﬁ(z-&) <W(z) . As &+ 0, U(lx) + W(z) ,

proving continuity from the left.

We can now show that 02 depends continuously on z . Suppose
z(n)-vze ( ﬂ For some 2' ¢ (/V, z(n) Sz' for all n . Then
= 3(") C /‘) :, for all n . Since the latter set is compact, it suffices
to show that any convergent subsequence of the corresponding sequence of
optimal paths, o;(“) , must converge to o; , the optimal path for =z .
Renumbering, we may assume o;(n) itself converges to some oz € }z .

By the continuity of W , Lemma 1, and the optimality of 02 in 2’

respectively, w(oz) = lim w(oﬁ(n)) = lim ﬁ(z(n)) :ﬁ(z) = tl(og) =>'w(oz) \

Therefore w(oz) = W(o;), 8o z = 02 by the uniqueness of OE , thus proving

continuity of oE .

Lemma 2. Suppose O Sz<z'<z, and let 2z and 2z’

be the corresponding optimal paths. Then either 21 < ;i or z, = Ei =0 .

Proof. Since 2z =0 implies ;l= 0 the statement is obvious

in that case.

Now assume O < z . The stationarity of U (equation (2)) implies

that for each t , t; is optimal for Et « Therefore if

" q A g A' . A A'
2, = 2] # 0, then 12 = 42 Suppose 80, and let .x and,x' be the
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acsociated consumption jaths. Then Ql < §i and 2§ = 2§' 5 Write

- ~ - A' I~ " ) .
Us U(BX) U(jx) . Then (xl, x2) raximizes V2(x, Y3 Uj) subjecct to

n(n(z) - x) -y = 2 and similarly for (X, ;'Eé) . But this is scen to

2 J
contradict assumption (V) , since §1 < ii s §2 = ﬁé , and h(z) - il = 51 =
= Qi = h(z') - §i , and in view of the concavity of h , the strict
quasi-concavity of U, hence of V2 (See Figure 7).
\
T [ER
"
V()«)H;U}‘ v ()(’(/;-'- —k)
| =V o, J,) LD A P
N .
LY \
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\\
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/\~ ~
- /
"*r/_ - R IS . | e
-1 |".|[Lf = J—IJ!I
I ,11\?{_
t Z
\
i"\\ —* I'-,\ — -® ’ g
\ »- F 3(c.) A N F]a. 3(6)
% ?' £ >/>(//
N &
Q b’ :/ 1 Y .
" —— vJ \ \.\
L ¥ = . T e
R ., t= A N =
lo} 1 2 0 1 2



Now suppose zl> ;i >0 . Moving from 2z toward zero and

using continuity, we can find 2" with 0 < 2" < z' but with the

~
L

corresponding 2% = z! ; see figure 3(a). This was just shovn to be

impossible.

~ ~
Finally, suppose % >z2'=s0. Moving from 2z' toward 2
"

we get a 2" with 2' >2" >z and with the corresponding 21 satisfying

A” ~ -
0 < zl < zl 3
This proves Lemma 2.

see figure 3(b). But this is the case ruled out just above.

We now prove monotonicity of optimal éspitnl paths. Suppose z
/]

is optimal for z¢ -, z >0 . Suppose first that ‘z‘o<2

N> O

Now is

1 .
Inducing, we get

1

so Lemma 2 implies ;1< ;2 .

and z°>z

optimal for ;1 ’
't<‘t+1 for all t . The cases zo-z are handled

similarly.

s § 1

k. Asymptotiec behavior of optimal paths.

in time iy
Monotonicityof the optimal path z implies that the (possibly

infinite) limit ;. = lim ;t exists. We wvant to determine, in terms of the
tow

initial capital stock z , when 2 increases,is constant, or decreases~and vhat
t over time

its limit is.

?uppose the pair (X, y) maximizes Va(x, y; U) = v(x, v(y, U))
subject to the constraint z, = h(h(zo) -Xx)-y, vhere U, z, and z,
are given. Let 2, =h(z)) - X and Up = V(¥, U) . It follows from the
usual analysis that, if x >0 and y >0, then

6 2V, Op) = g VX ) - VG, U) - (4 £0(3y)
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If x or v is zero, (6) is replaced by an appropriate inequality.
Conversely, (6) or the corresponding inequality implies that (X, ¥)

is optimal for the given problem.
Similarly lgn with each §t >0 maximizes
vn(lxn’ U) = Vél, V(x2, — V(xn, U)..)sub,ject to X being obtained by

(&) fromozn with z, z , U prescribed,if and only if

d ~ A ~ A " )
(7) & V(Xt, Ut+l) = gu v(xt) Ut"‘l). ga; v(xt"'l, Ut+2).(l + f'(Zt)) 14

L= ll 2, evey n- l » Where Ut - vn-t"’l(txn’ U) &rld Un+l = U &

A path Oz with associated consumption path ox cannot be

T er

improved by finitely many changes in z , t >1, 1if and only if the \

t’
corresponding equations (7) hold for all t . Thus o2 cannot be improved
by finitely many changes if and only if it cannot be improved by a single *

change.
4
Given z e (/, z >0, the consumption path associated with

) o I z  were

is x , where x =1f(z) . Let U= U(con -

2
con con

optimal we could divide (6) by 5—3 V(x, u) to get

(8) a(f(z))(L + £'(z))=1,

where «a(x) 1is given by (2a).
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Partition [0, z] into disjcint sets:

(}}- = {z| z =0, z'-z-: or off(z))(L +2'(z)) =1,
7 e (0<z<T] alg(2)Qrr(z) >1),

{(0<z<z| aff(z))(1+£'(z)) <1).

= TES
Then J is closed and J ’ J < are cpen. The preceding

7

shows that a necessary condition for cEn" to be optimal if z e 1is

/=

that z €. - . We shall show:

Theorem 2. Let o; be optimal for z, 0<z <z . Then

(a) if z ¢ » o 1is the constant path z ;

(b) if z e >, then ;t increases and Zw is the

smallest number in . j/ = which is larger than z ;

/)
//< -~ A
(¢) if z e ~ °, then z, decreases and z_ =~ is the largest

number in / ® which is smaller than z .

A path o; optimal for z 1is called stable if for every path o%'

optimal for z' which has 2z' sufficiently near 2z , the limit

2‘; = 2 .  We have the following consequence of Theorem @; see Figure 4.

Ccrollary. Let 02 be optimal for z . Then z is stable

— o ————————
= >
unless z € o and is also in the closure of (z' | z' ¢ (/ , 2' >1)

or of [z'lz'eu(/<,z'<z}.



Figure 4. Optimal paths; all except (b) and (f) are stable.

It zeJ" , 0<z<z, then (8) shows that the equations (7) are
satisfied by the path conz = oz . Therefore oz cannot be improved by
changing only finitely many of the z. , t 2 1. Statement (a) of

Theorem 2 is thus included in the following

Lemma 3. Let z Dbe a feasible capital path with z, S2¥ <z

for all t . Suppose w(oz) ,_fw(oz') for all  z' with z' =2z and

z' = 2 for some m, n . Then 2z 1is optimal,
m n" ——— — o0

o

T ey
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Proof. Suppose oz" € 3 z ? and suppose first that zg >0, all t.
" “o

)
For any n there is a path z(n) €3 with z(n) = 2z" and z(n) = 2
) 2 z, on o'n m m

for sufficiently large m (depending on n , zx'zl and oZ this follows

from the last remark preceding Figure 1 above. Then W(oz) _>W(oz(n)) , and

z(n) + 2" 8o w(oz) =?W(oz") . If 1z is eventually zero, choose oz(n)

(o} t

similarly but with zt(:n) = max [zt'_:, en] for t : n , where €, >0, e 0.

Again ve find W(oz) 2 lim w(oz(”))= w(oz") , 80 z is optimal.

It 18 clear from the proof of Lemma 3 that the assumption that zt

is bounded away from z 1s stronger than necessary. What is needed is that

1:z can always be caught up with, even from a late and bad start. Some such

assumption is clearly necessary, however, for let z, = h(t)(zo) , all t,

Then z' € |, and z'= 2z for some n implies z'= z. Thus =z
(o] 4 2o n n o} o o]

cannot be improved by finitely many changes, since it cannot be changed in

only finitely many places. However the associated consumption path is

cono » 80 2z is strictly inferior to any other path in jz .
o

Next we consider the effect of finitely many changes in 2

) con
-
when 2z ¢
0> 4
Lemma 4. Suppose 2z € . If JZ€ fz and zt§ z for
= <wl
t<n, while z = _z, then W(oz) = w‘conz) . Moreover, equality

holds only if a8 = 2{ s

con
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Proof. We induce on n . By assumption z,=12, 860 for n=1
there is nothing to prove. Suppose the statement is true for n=m 3 1l

< < = =
and suppose 2, = 2 for t > m while 1% con? If z, =2

then mz = conz and the statement holds, by assumption. Suppose zm <z.

()
Choose a path z' ¢ -2  with z

o X t'=z,tfmandzn'lnz+b,b>0.

The corresponding value of W satisfies
. ov
W(z') - W(_2) = S5 (x, Oa(x)(1 + £1(2)) - 1] -8 + ¢(8)-8 ,

where x = f(z) , U= w(ccnz) , and (8)+0 as 8 +0. Since z € a">,

the factor in square brackets is positive. Therefore, for small positive & ,

w( z')>W(_ _z). Now z_ <z<z', sothere is a convex combination z
) con m m o

= x(oz) + (1-x)(oz') vith 2% =2z . Clearly z/ <z for t<m and

"o -y <
n” con? - The induction assumption implies that w(0~ ) S W(conz) .

Strict quasi-concavity of W implies that w(oz") > min {w(oz), W(oz')] b
1 > " " .
but W(OZ ) >W(c0nz) z W(oz ), 8o w(oz ) >w(oz) . Therefore

W( ) >W(oz) , completing the proof.

Z
con

<
A similar argument shows that if 2z € «/o , any change in conz

moving finitely many 2, upward is a change for the worse.

We can now prove (b) of Theorem 2. Suppose z ¢ ﬂ > and let 02
be the optimal path for 2z . We know that o; is not constant, so it either
increases or decreases. Suppose it decreased. As in the proof of Lemma 3 ,
there would be a sequence of paths oz(n)e ;) such that z(n) + 2 s

/,7 2 0 )

(n) < (n) _
2z, ' =z forall t, and = = .op? TOr large m . By Lemma L,
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—;(n) < A <
W(O.. S w(conz) , all n . Thercfore w(oz) = w(conz) ,contradicting

A

the unique optimality of 02 , since z 1in ncncptimal. Thus o increases.
con

let 2z be the smal _est number in = which is larger than z .

If z' =z then certainly ;w Sz'. If 2'<z, then con?' 18 optimal
for z' and repeated application cf '«mma 2 shows that Et <z' forall t.
Thus again ;” =_<_ z' . Suppose ;w = 2" <2 Then Tg satisfies

A

equations (7) for large T and all n , if we write Uy = W(Tm_lz) . But

~
1"

1" ‘
(% een? + By comtimuity 2" will also satisfy equations (7,

o> - ' i = "o t
with Un+l -w(conz )5 8o 2" @ . Then 2" = 2' ., This completes the

proof of (b), and the »roof of (c) is exactly parallel.

~

Ir oz is an ontimal capital path and 12 is the associated

consumption path, then lx obviously has the following properties:

;Et < f(zt) if Qt increases;
;t = f‘(::t) ise ‘:‘t decreases;
x, = lim x_ = lim£(2,) .
tw t4
[L ls ¢ elonr whether cur assumptions guarantec that §t is also

nonotone with respect to time. It 15 monotone when U hac the srecial

form (1), sce cquation (7)
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5. Construction of optimal paths

We give two procedures for constructing the optimal capital
path as a limit of a sequence of paths each obtained by solving the
optimization problem for finite time. Each procedure has certain dis-

advantages, theoretical or practical.
Given a path 2z 6/92 and an integer n > 1, let Tn(oz)
be the path  z'e 2&2 which maximizes w(oz') with contraints

U = ' = N
o?'n-1 = ofn-1 ’ n+12 n+1? Thus Tn(oz) is obtained from o?

by making the béét feasible adjustment in z, alone. Then Tn is an
operator from 2;& to i;e . Note that w(Tn(oz)) §>W(oz) , with

z .

equality only when Tn(oz) X

das T,

Let Sn be the iterated operator Sn =TT 1

n n-1

and suppose z ¢ QQ , 2 >0 . Start with some path oz(o) in Q;Z

and define a sequence of paths inductively by

o2 - Dn+1(o

z(n)) .

is obtained by improving oz(n) in the first n+l

(n)

Thus z(n+1)
o

places, in order. We cannot be sure that o2 will converge to

~

the optimal path of in fact if we make the unfortunate initial

choice zﬁo) = h(t)(z) for all t , then there is no room for finite



I
for all n, and oz(o) is inferior to f

Same subsequence oz(n’J) will converge to a path oz € 6?2.

This path cannot be improved by a single change, so 1t cannot be improved

by finitely many changes. In fact W(Oz(n)) is nondecreasing, and

(2™ suer (™)) S, (2 ™)) 2w ™)

so W(Tl(oz)) = W(Oz) . Hence, by strict quasi-concavity of W , the

adjustment of 2. 1in the definition of Tl(oz) leaves 2z

1 unchanged,

1

and Tl(oz) = ,z - Inductively, suppose Tj(oz) = 2 for <o Then

T = sn+l(oz) , and the same argument shows W(Tn+l(oz)) = W(oz) ,

n+l(oz)

z . If z < z* <z for all t , then, by Lemma 3,

Ee Tn+l(oz) o t

o2 is optimal. Moreover, if oF is optimal, then any other convergent
subsequence of Oz(n) will converge to a z' with w(oz') = w(oz) .

(n)

Hence the whole sequence of will converge to of - As noted above,
the 1imit need not be optimal, however.

An optimum can be guaranteed by the following method. Given

Z € ;D with z >0 , choose some z' € \y . (A computationally

A

helpful choice of 2z' 1is the 2 of Theorem 2, provided Em <z .)
For some N there is a path oz' € ’Z?Z with Nz' = z' . For

any n >N there is a unique oz(n) € 2}2 maximizing w(oz) subject
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to z = z' . Let Oz be optimal for z . As in the proof of

Lemma 3 there is a sequence of paths Oi(n) * such that, for ecach

n, the tail ;(n) is eventually z' . Then W( E(n)) §w( z(m)) ;
m con 0 o

so lim W( z(m)) =wW( z) . It follows that z(m) > 7.
) 0

The practical difficulty with this method is that it involves
solving optimization problems for more and more time periods, rather
than for one period at each step as in the first method. ILet us note
that each such problem can be solved by iterating the one period

solution. Suppose oz(o) € ‘}z and n =>l . A modification of the

argument above shows that Oz(m) = (Sn)m(oz(o)) converges to the

' i (0)

n
N

! [}
path o' € {,éz which maximizes W(Oz) subject to n+12
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